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1.0  SUMMARY 
Scalable, data-parallel graph analytics on many-core hardware is a fundamentally hard 
problem that goes beyond the current state of the art.  Scalable graph analytics are 
critical for a large range of application domains with a vital impact on both national 
security and the national economy, including: counter-terrorism; fraud detection; drug 
discovery; cyber-security; social media; logistics and supply chains; e-commerce, etc.  
CPU graph algorithms are known to scale poorly due to non-locality and limited memory 
bandwidth. Our research shows that GPUs provide a high-performance, data-parallel, 
commodity hardware platform for graph analytics. 
Our goal is to develop a scalable, open-source solution for high-performance graph 
analytics on GPUs.  Our approach combines a high-level abstraction that allows 
analysts to easily write graph analytics that leverage GPUs; a high-performance, data-
parallel runtime for the GPU; and a scalable architecture for GPUs and GPU clusters.  
Our team delivered an initial Thrust-based version of the “GAS Engine” Proof Of 
Concept (POC) in June.  Since then we have re-implemented the graph engine from the 
ground up using a data-parallel runtime strategy based on leading-edge research 
[Merrill2012] and released the code under an open-source project, “MPGraph”. 
We demonstrate GPU scaling on several data sets of interest to DARPA, including 
Wikipedia, a scale-free random graph (kron), Akamai trace route data, Bitcoin 
transaction data, and a Twitter follower network. We present results for Breadth First 
Search (BFS), a fundamental primitive for graph traversal, and Single Source Shortest 
Path (SSSP). We measure GPU speedups of between 3x (SSSP on a random graph) 
and nearly 300x (Akamai and Bitcoin) over the CPU performance of a well-known and 
widely deployed CPU-based graph mining platform that uses a similar high-level 
abstraction (GraphLab). We also measure significant speedups over our initial POC as 
shown in Figure 1. 
 

 
Figure 1:  GPU Speedups vs. CPU 
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Our research in the first year has proven the feasibility of a high-performance graph 
programming engine on the GPU for two key graph algorithms. However, a single GPU 
has only 6G of fast device RAM. Therefore, larger graphs must be partitioned to scale 
off the device. Further, developing code for the GPU is notoriously difficult. Continuing 
into the second year of research we will:  

(a) extend these results to additional graph algorithms;  
(b) encapsulate these results within an easy-to-use and extensible open source 
platform; and  
(c) demonstrate that these results can be scaled to multiple GPUs. 

 
2.0 INTRODUCTION 
 
[Merrill2012] demonstrated that GPU can deliver 3 billion Traversed Edges Per Second 
(3 Giga-TEPS or GTEPS) across a wide range of graphs on Breadth First Search 
(BFS), a fundamental building block for graph algorithms. Merrill found that the GPU 
enjoyed a speedup of 12x over the idealized multi-core scaling of a 3.4GHz Intel Core i7 
2600K CPU (the equivalent of 3 such 4-core CPUs) across the majority of the graphs. 
Thus, assuming perfect scaling, the throughput of a single GPU is comparable to that of 
between 12 CPU cores.  In fact, (a) CPU graph algorithms are known to have sub-linear 
scaling; and (b) the GPU performance was significantly higher on some data sets. Since 
a workstation can host up to 4 GPUs, there is a tantalizing possibility of achieving, in a 
single workstation, the throughput of a cluster with between 48+ cores (e.g., 6+ servers, 
each having 8 cores per machine). This suggests that sophisticated, high-performance 
analytic capabilities could fit under a desk, be delivered on a ship, or forward deployed.  
 
Merrill estimated multi-core CPU scaling in two ways. First, he directly compared with 
the best published results for multi-core CPU algorithms.  Second, he implemented a 
single-core version of the algorithms, verified performance against published single-core 
results, and then used idealized linear scaling to estimate multi-core performance. The 
second approach deliberately hedges performance in favor of the CPU.  If fact, as we 
show below, at least one widely deployed CPU graph mining solution does not scale 
well as a function of the number of CPU cores.  Thus, a GPU enjoys a very significant 
advantage for graph algorithms over a CPU, at least for a single machine. The main 
reason for the high performance of the GPU on graph algorithms is the high bandwidth 
of the device memory.  Graph algorithms are memory bound.  CPU architectures have 
slower memory, hit the memory bandwidth bottleneck sooner, and cannot scale beyond 
that bottleneck by adding more CPU cores. 
 
A single GPU can hold a graph with a billion edges in its high speed DRAM. Scaling to 
larger graphs requires partitioning the problem. To the best of our knowledge, no 
published work has demonstrated good scaling to multiple GPUs and GPU clusters on 
BFS, the fundamental building block of graph algorithms, let alone across a wide range 
of graphs, algorithms, and data scales – we analyze some reasons for this in the 
section on Related Work. 
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Our effort will deliver a highly scalable solution for graph processing on GPUs 
and GPU clusters that will advance the state of the art.   
 
Our solution will provide: 
 
(1) A high-level abstraction for expressing data-parallel graph algorithms: This 
abstraction will make it possible for ordinary programmers to leverage data-parallel 
evaluation of graph algorithms on GPUs; 
 
(2) A data-parallel runtime: An optimized, data-parallel runtime will deliver the potential 
of GPUs for graph analytics; and 
 
(3) Scalable graph analytics that go beyond the state of the art. Large graphs will be 
automatically decomposed into patches.  Operations on large graphs will be 
decomposed into tasks that operate over those patches. The patches and tasks will be 
distributed across the resources of a multi-GPU workstation or GPU-enabled compute 
cluster in a way that minimizes the communications volume.  A local scheduler on each 
node will run tasks as their prerequisites are satisfied, optimize the bandwidth utilization 
of the PCIe bus by intelligent data and task placement, and overlap data movement with 
computation to hide latency.  
 
2.1 Many-Core Architectures 
 
CPU clock rates have been flat for nearly a decade. In order to increase throughput, 
applications must rely on parallel processing architectures (either large shared memory 
machines or horizontal scaling on clusters), main memory, and many-core architectures 
(GPUs, Xeon Phi). The current and next generation of CPU architectures, e.g., Haswell 
and Broadwell, both integrate GPU processing units into the CPU. This trend will 
continue since clock rates for CPUs can no longer be increased due to fundamental 
manufacturing and energy dissipation limits. However, it is a non-trivial problem to scale 
applications onto these hybrid architectures.  In particular, GPU algorithms are hard. 
They require significant expertise to develop, intimate knowledge of the CPU and GPU 
memory systems, and detailed knowledge of the Compute Unified Device Architecture 
(CUDA). 
 
Researchers have known for a decade that memory bandwidth, not processor speed, 
was the primary performance limitation for data intensive applications [BONCZ1999]. 
While the clock rates for GPUs are much slower than those for CPUs, GPUs have 
nearly ten times the compute throughput when compared to modern CPUs (e.g., 1331 
single-precision GFLOPS versus 100 single-precision GFLOPS). Further, GPUs also 
have nearly ten times the memory bandwidth of modern CPUs (192 GB/s versus 21 
GB/s).  (Both the FLOPS and the memory bandwidth numbers are for the GTX-580 
GPU and the i7-2600 CPU). GPUs are potentially much faster than CPUs for 
applications that are limited by either compute (FLOPS) or memory bandwidth. The 
GPU maintains its order of magnitude bandwidth advantage over the CPU for 
sequential access, random access and Compare And Swap (CAS) operations. Thus, 
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while coalesced memory access patterns are much faster than random access patterns, 
the GPU still out performs the CPU by the same margin when non-coalesced access 
patterns dominate a computation. 
 
Modern GPUs have up to 6GB of high bandwidth memory on the device. Applications 
that exceed this memory limit need to scale “out of core” – techniques for doing this are 
discussed below. The GPU can access main memory at the bandwidth of the PCIe bus. 
A 16-lane PCIe 2.0 bus has peak 8 GB/s one way. PCIe 3.0 doubles this to 16 GB/s. 
However, out of core scaling can still provide significant performance gains if the 
application can overlap data movement with computation and benefit from increased 
memory bandwidth on the GPU. For example, a performance improvement between 3x 
and 8x has been demonstrated for hash joins on GPUs when scaling out of core 
[KALDEWAY2012] (the performance gain increases with the size of the join since data 
transfer costs are amortized). If those transfers can be made to overlap with 
computation, then the latency of the transfers can be hidden as well. 
 
Today, the world’s fastest supercomputers rely on many-core architectures.  For 
example, ORNL Titan (http://www.olcf.ornl.gov/titan/), is a collection of 18,688 compute 
nodes. While each node has 16 CPU cores, Titan gets most of its 20+ petaflop 
performance from an NVIDIA K20 GPU on each compute node.  Titan, which took first 
place in late 2012, was surpassed in 2013 by Tianhe-2 (“Milky Way-2”). Tianhe-2 uses 
16,000 nodes, each with two Intel Xeon IvyBridge processors and three Intel Xeon Phi 
processors (the Xeon Phi is a many-core architecture that puts many Pentium class 
CPUs onto a daughter card). 
 
2.2 Scalable Design 
 
There are three major aspects to a scalable data-parallel application.  The application 
infrastructure must: (a) provide a domain-specific, high-level abstraction for writing 
applications; (b) provide an efficient, low-level, data-parallel runtime for the domain 
specific operations; and (c) decompose the problem into tasks, organize those tasks 
into directed task graphs that expose the maximum amount of parallel work, and 
overlap computation with data movement.  Application code is written using the domain-
specific abstraction as a series of tasks. Those tasks are compiled into a form which is 
executed by a distributed runtime system. On each node, tasks execute using the low-
level data-parallel runtime to perform their work efficiently. This approach increases 
user productivity, inherently future-proofs the architecture, and scales gracefully. 
 
This approach to scalable data-parallel applications is based on lessons learned from 
large-scale parallel scalability studies with the MIT open-source Uintah Software 
(http://www.uintah.utah.edu). Uintah has used variants of this approach since 1998. 
Since 2005, using this approach, Uintah has been extended to run on, and scale to, the 
very largest machines – this work was performed in a team led by Dr. Berzins, an 
academic member of the SYSTAP team. Today, the Uintah simulations scale to the 
world’s largest supercomputers, including the ORNL Titan supercomputer. Uintah 
insulates the application from the rapid evolution of hardware and architectures through 
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a variety of high-level abstractions, including: (a) a domain specific abstraction for 
writing analytics [Nebo2012]; (b) a low-level, data-parallel runtime supporting those 
analytics; and (c) a data warehouse on each multi-core or GPU node which abstracts 
away hardware specific operations required to support the movement of data and 
scheduling of tasks in order to hide latency and maximize throughput 
[Concurrency2012]. 
 
Since 2011, Uintah applications are able to run in hybrid computing environments with a 
mixture of different technologies due, in part, to the future-proofing aspects of the 
domain-specific abstraction [WOLFHPC, XSEDE2013, Nebo2012].  In order to achieve 
good per-core or per-GPU efficiency, Uintah uses an approach called Wasatch to 
decompose each task in the Uintah task-graph still further into a sub-graph that is 
dynamically executed on a core or a GPU [EUROPAR].  This approach has been shown 
to produce scalability to 250K cores [CCGRID13] and has recently been found to 
produce automatically generated code that is an order of magnitude faster than the 
original hand-written code in the Uintah flow component. 
 
While graph models of computations arise naturally in many situations, there are many 
significant differences in the structure of the graphs related to the application.  In Uintah, 
graphs are somewhat coarse-grained in nature as they arise from mesh-patch-based 
computation models of complex systems of partial differential equations.  However, the 
graphs considered here have less regular structure, less locality in their 
communications, and more complex data types.  Thus, the architectural lessons and 
design principles learned from Uintah can be generalized to graphs, but the task 
decomposition method and high-level abstraction cannot be directly shared between 
graphs and these other domains.  There are tools available to partition graphs, such as 
Par Metis [KARYPIS1999] and Zoltan [DEVINE2006, DEVINE2002], and such methods 
may be used to coarsen and decompose graphs in a way that either approximates or 
directly minimizes the communication volume.  A variety of approaches have been 
suggested - see Related Work. In addition, experiences with adaptive meshes in Uintah 
have provided insight into how to address situations in which the workload and the 
underlying graph structure change in a dynamic way [IPDPS10]. 
 
Present work in Uintah is focused on ensuring that multiple GPUs may be used in an 
efficient manner when there is significant communication between these GPUs. This 
work has led to the development of new Uintah GPU task APIs that make it easier for 
component developers to write GPU task kernels.  The new Uintah GPU interfaces 
include GPU data warehouses that are similar to the CPU data warehouses previously 
deployed. The data warehouse works as a combined memory manger, data transport 
agent, and task scheduler. To do this, the data warehouse maintains a dictionary of 
required variables and other dependencies for a task to execute and a simple queue 
structure that is used to monitor when all the information for a task is available 
[SC2013].  The data warehouse uses this information to manage the movement of data 
both onto, and off of, the compute device, and to store the results of each task in a way 
that makes these results available to successive tasks, whether local or remote.  The 
data movements overlap the computations on the compute device in order to keep the 
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compute device busy as much as possible.  Because the data warehouse knows the 
actual resource requirements for the current and future tasks, it can optimize data 
movement with respect to the computation. Since the device memory is now managed 
by the data warehouse, variables can now exist beyond a task kernel execution, thus 
reducing PCIe memory bandwidth usage. In addition, when there are multiple GPUs in 
a single node, the GPU data warehouse knows the variables location across those 
devices so GPUDirect could be used to avoid memory copy through host [WOLFHPC] 
or to place a task on the device that requires the least data movement. Once the 
requirements for a given task are satisfied, the Uintah framework will do the 
CudaMalloc/H2D/D2H memory copy asynchronously and automatically. In this way, the 
data movement can overlap with GPU kernel execution, CPU task execution, and MPI 
communications to hide latency. As each Uintah GPU task use one CUDA stream, a 
kernel will be launched when its required variables are ready in the device memory and 
multiple kernels and two-way memory copies can be executed concurrently. One the 
GPU task is launched, the component developer can call a “get” function to find the pre-
loaded variable location in the device memory using the variable name, patch ID and an 
index key. 
 
2.3 High Level Abstraction 
 
Several abstractions have been developed for graph pattern matching and graph 
algorithms. These abstractions fall into three categories:  
 
- Declarative Query Languages, such as SPARQL [SPARQL2008], GraphQL 

[HE2008], and Cypher (http://www.neo4j.org).  See [WOOD2012] for a recent 
survey;  

- Domain Specific Languages (DSLs), such as GreenMarl [Hong2012]; and 
- “Vertex-centric” abstractions, such as Pregel [Pregel2010] , Signal/Collect 

[Stutz2010], and GraphLab [GraphLab2010, GraphLab2012, PowerGraph2012, 
GraphChi2012, GraphLab2013].   

 
Graph query languages lend themselves to graph pattern matching and path 
expressions, but popular graph query languages cannot be used to express iterative 
graph traversal algorithms such as BFS, SSSP, Connected Components, etc. The 
Signal/Collect team has demonstrated (private communication) that good performance 
on graph query languages can be obtained by translating the query into a data flow over 
the graph. Domain specific languages can be used to write graph algorithms, but DSLs 
for production systems must be carefully designed in order to allow programmers to go 
around the abstraction when the DSL implementation encounters a translation problem 
that is poorly handled by its rule set. The most developed DSL for graphs is GreenMarl, 
which is being migrated into a high-end Oracle product. However, there has been, as 
yet, little interest in replicating this approach in the open source community. The “vertex-
centric” abstraction has captured the interest of both academic and open source 
communities with a variety of open source platforms, including GraphLab, Apache 
Giraph, GoldenOrb, etc. A large set of graph algorithms exists for this approach, and, 
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even with the lack of a standard, algorithms can often be ported to new platforms with 
very little development effort. Further, the vertex-centric abstraction makes it relatively 
easy to develop new algorithms. The SYSTAP team has direct experience with the 
SPARQL graph query language and includes a high performance SPARQL query 
engine in their graph database platform.  
 
The GAS abstraction supports 2D partitioning (vertex cuts), which is known to minimize 
the communication volume [Checconi2012, Vastenhouw2005]. The GAS abstraction 
also imposes some constraints on the phases in the computation when the vertex and 
edge state may be accessed in read-only and read/write modes that are known to 
facilitate scaling.  Further, using the GAS abstraction significantly reduces the time 
required to write new graph analytics for the GPU. For example, it took only hours to 
implement and test a Connected Components algorithm using the GAS abstraction.  In 
contrast, a low-level implementation of a Connected Components algorithm took several 
months to develop. We have also shown that, for at least some graph algorithms, e.g., 
BFS (which requires the traversal of only the out-edges) and Single Source Shortest 
Path (SSSP) (which requires the traversal of both in-edges and out-edges), the GAS 
abstraction can be mapped onto the underlying GPU hardware without sacrificing any 
efficiency. Thus, we believe that this high-level abstraction will significantly reduce the 
time to develop new graph analytics, obviate the requirement for an expert CUDA 
engineer to make write those graph analytics, and open up the capabilities of the GPU 
hardware to a broad base of developers and analysts. 
 
2.4 Data-parallel Runtime 
 
In Uintah, there is an inherent spatial topology that is not present in more general 
graphs problems. The lack of a spatial interpretation gives rise to non-local access 
patterns.  Graphs also require data-dependent parallelism since the number of edges 
into and out of each vertex is a vertex specific property that can vary widely both within 
a single graph and across different graphs. Therefore, operations on graphs require an 
adaptive, data-dependent parallelism that is significantly more irregular in structure than 
that seen with Uintah. This irregularity shows up at several levels.   
 
- Thread assignment: [Merrill2012] demonstrated that an adaptive thread assignment 

approach significantly outperforms a fixed policy. In order to achieve a high 
throughput on a GPU, the strategies for assigning Threads, Warps, and CTAs to 
vertices and edges must take into consideration the fan-in and fan-out of each 
vertex. This data-dependent characteristic varies on a vertex by vertex basis within 
the graph and different graphs may have characteristically different degree 
distributions. A similar data-dependent approach is adopted in Uintah to address the 
execution of a very rich mix of tasks [Concurrency2012]. 

- Size of the frontier: Some graph algorithms explore a dynamic frontier while others 
must visit all vertices and edges in the graph in each iteration.  Different techniques 
are more efficient depending on which visitation pattern is used.  For example, the 
Parallel Sliding Window [GRAPHCHI2012] approach provides an IO efficient solution 
when all vertices must be visited in each iteration.  Techniques that produce a 
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compact frontier can perform significantly better when the size of the frontier is 
small, but may be dominated by other techniques as the size of the frontier grows.  
Under some cases, it can become substantially more efficient to reverse the 
direction of the traversal [BEAMER2012].  

- Data layout and compression: GPU graph primitives are constrained by the available 
memory bandwidth.  The overall throughput can be increased by optimizing the 
memory layout. However, the best memory layout is a data dependent property of 
the graph related to the static and dynamic aspects of the computation state for the 
edges and vertices in the graph. The memory layout can be optimized in advance for 
specialized problems, such as BFS, but a more general approach is needed for a 
general purpose graph processing framework. Compression can improve the overall 
throughput by doing more work per byte. Compression can also increase the size of 
the graph, or graph partition, that fits into the device memory of the GPU. This 
directly effects the efficiency and scaling of graph computations. 

- Approximation: Many algorithms, including betweenness centrality, triangle counting, 
page rank, etc. can be approximated with an enormous savings in time and memory 
when compared to their exact computation. Approximate solutions are often 
examples of working smarter, not harder.  We are exploring ways in which 
techniques for approximation, such as sampling edges [Brandes2001] and 
computations on reduced rank approximations of the graph [Zhao2013], can be 
introduced into the high-level abstraction and the data-parallel runtime. When 
solutions are approximate, either the estimation error associated with the 
approximation needs to be reported back to the analyst, or the estimation error 
needs to be used to guide an adaptive resolution in which the computation does a 
minimum amount of work to ensure a target estimation error in the result (similar to 
adaptive resolution in Uintah). 

- Breaking encapsulation: Some graph algorithms break the encapsulation of the GAS 
abstraction.  Examples include algorithms that require explicit control of 
synchronization barriers, algorithms that need to maintain an auxiliary data structure 
(this is often finessed by adding “fake” vertices not present in the given graph in 
order to capture additional state that must be visible beyond a given vertex or 
partition), or algorithms that must carry out operations on the graph that are not 
currently supported by the abstraction (such as sampling or graph mutation). Such 
algorithms currently must be written to a lower level of the runtime. More research is 
needed to ensure that the abstraction does not get in the way of writing scalable 
applications and that lower level abstractions remain available in a distributed 
parallel architecture. 

- Synchronization barriers: Global synchronization can cause tremendous overhead in 
a large distributed computation since all nodes block during coordination. A variety 
of techniques can ameliorate those costs, including asynchronous execution 
[Pearce2010], speculative execution, interleaved computations, and using tree 
structured communication paths to reduce synchronization latency. All of this should 
be hidden from the user. 
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Existing research has shown that GPUs can provide excellent throughput and 
price/performance for graph problems. However, efficient, data-parallel execution of 
graph algorithms on multiple GPUs and GPU clusters remains a hard problem requiring 
innovative and adaptive techniques. Further, high-level abstractions are necessary to 
expose the performance of the GPU to everyday programmers. By choosing the right 
abstractions, we can future-proof the application against continuing evolution in 
hardware architectures. While good scaling has been shown on CPU-based 
architectures, there has not yet been a serious effort to develop a scalable graph 
processing architecture for GPUs.  We propose to address this fundamental and 
important research problem. 
 
2.5 Related Work 
 
Graph traversal and graph partitioning have been studied extensively in the literature. 
On a distributed parallel computer architecture, scalable and efficient graph analytics 
requires a suitable decomposition of the data and the associated work. The data 
decomposition is typically done by graph partitioning. Hence, the goal of the graph 
partitioning is to distribute data and work evenly among processors in a way that 
reduces communication cost. There are many graph partitioning strategies proposed in 
the literature. The simplest strategies is the 1D partitioning, which partitions the graph 
vertices into disjoint sets and assigns each set of vertices to a node. 1D partitioning is 
implemented in widely used packages such as Metis [KARYPIS1995] and Zoltan 
[DEVINE2006, DEVINE2002]. These implement 1D partitioning using an efficient 
multilevel bipartitioning algorithm, which is parallelized by Par Metis [KARYPIS1999]. In 
2D partitioning the graph edges are distributed among the compute nodes by arranging 
the edges into blocks using vertex identifier ranges. These blocks are organized into an 
n x n grid and mapped onto p virtual processors, where p is a power of two. Each row in 
the grid contains all in-edges for a range of vertices.  The corresponding column 
contains the out-edges for the same vertices. In [Checconi2012], the authors propose a 
highly scalable 2D graph partitioning algorithm. They implement BFS with this algorithm 
on IBM Blue Gene/P and Blue Gene/Q machines using optimizations to reduce 
communications by 97.3% (through a “wave” propagated along the rows of the 2D 
partitioning to eliminate duplicate updates) and also optimize for the underlying network 
topology. This approach was ranked 1st and 3rd in the June 2013 Graph500 
(http://www.graph500.org). Vastenhouw and Bisseling [Vastenhouw2005] introduce a 
distributed method for parallel sparse-matrix multiplication based on 2D graph 
partitioning. Many of the 1D and 2D Graph partitioning algorithms perform partitioning 
on the original graphs and try to minimize the edge-cuts. However, it has been shown 
that for many problems, this edge-cut metric is not an accurate representation of 
communication cost, and hypergraphs more accurately model the communication cost 
[Catalyurek1999]. Several open source libraries exists for hypergraph partitioning, such 
as PaToH [Catalyurek1999-patoh] and hMETIS [Karypis1997]. However, these libraries 
run in serial. For large-scale parallel applications, partitioning must be performed in 
parallel. Devine et al. introduce a parallel hypergraph partitioning strategy in 
[Devine2006] and develop a parallel software package at Sandia National Labs. 
[PowerGraph2012] and [GraphChi2012] have been shown to be equivalent to 2D 
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partitioning.  Recently, other graph partitioning strategies are proposed for efficient data 
and work distribution, such as streaming graph partitioning [Stanton2012] and dynamic 
graph partitioning [Yang2012]. 
 
Several methods and software packages are introduced in the literature to use these 
graph partitioning strategies to develop scalable, high performance graph analytics on 
parallel architectures. In [Chen2012], the authors try to address the problem of how 
graph partitioning can be effectively integrated into large graph processing in the cloud 
environment by developing a novel graph partitioning framework to improve the network 
performance of graph partitioning itself, partitioned graph storage, and vertex-oriented 
graph processing. Also, in [Berry2007], Berry el al. introduce the Multi-Threaded Graph 
Library (MTGL), generic graph query software for processing semantic graphs on 
multithreaded computers. [Bader2008] introduces a parallel graph library (SNAP). 
[Agarwal2010] presents results for BFS on the Intel Nehalem EP and EX processors for 
up to 64 threads in a single system and presents performance comparisons to the Cray 
XMT [Ediger2013], Cray MTA-2 [Bader2006], and Blue Gene/L. [Pearce2010] presents 
results for multi-core scaling using asynchronous methods (as opposed to bulk 
synchronous) for main memory, semi-external memory, and external memory. 
[Buluc2011] and [Lugo2012] present an approach to graph processing based on sparse 
matrix-vector operations. 
 
Graph algorithms are memory bound, thus memory layouts (by increasing locality of 
reference) and data compression (by doing more work per byte) can both improve 
throughput. [Checconi2012] discusses the use of compression to improve locality of 
reference for BFS on large clusters, techniques to reduce the number of messages, and 
techniques to further reduce network contention using task oriented compression.  
[Bell2008] discusses the performance of different sparse matrix formats on the GPU.  
There is extensive literature on optimization of Sparse Matrix Vector (SpMV) 
multiplication, which is closely related to operations on graphs [Xu2010, Guo2010, 
Oberhuber2010, Feng2011, Heller2012, Koza2012, Pichel2012, Vázquez2012, 
Maggioni2013]. [Zhong2013] discusses source to source transforms in Medusa to 
optimize the memory layout by converting from Array of Structures (AoS) to Structure of 
Arrays (SoA).  [Sung2010] presents DL, an approach for automatically transforming 
data layouts when moving data between the host and the device.  [Fang2010] 
discusses column compression on the GPU and could offer a path to data sharing 
between the GPU and a graph database.  
 
[Harish2007], [Hong2012], [Merrill2012], [Totem2012], and [Zhong2013] (Medusa) have 
studied graph traversal on GPUs. Merrill developed the first work efficient 
implementation of BFS on GPUs, developed adaptive strategies for assigning Threads, 
Warps, and CTAs to vertices and edges, and optimized frontier expansion using various 
heuristics to trade off time and space and obtain high throughput for algorithms with 
dynamic frontiers. Merrill (for BFS) and SYSTAP (for BFS, SSSP, and CC) offer the 
best results to date for graph processing on a single GPU. [Merrill2012] presents results 
for up to 4-GPUs in a single workstation on BFS. Merrill stripes the vertices across the 
GPUs and relies on Unified Virtual Addressing (UVA) for data movement. This approach 
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did not provide good scaling on most data sets. Gharaibeh (Totem) and Zhong 
(Medusa) present multi-GPU results for Page Rank (PR) and BFS. Gharaibeh defines a 
performance model for hybrid CPU/GPU graph processing, tests that model with up to 2 
GPUs using random edge cuts, and notes that aggregation can reduce communications 
costs. Zhong uses 1D partitioning and also tests n-hop partitioning (to increase locality 
through redundancy). PR does more work per byte and visits all vertices in each round. 
This allows the simpler frontier and data-dependent parallelism strategies in Medusa 
and Totem to achieve good scaling. However, algorithms that do less work per byte and 
which have dynamic frontiers (such as BFS and SSSP) expose this weakness.  Both 
Medusa and Totem have poor scaling on such algorithms. None of the existing 
approaches shows good scaling to multiple GPUs across a wide range of graphs, 
algorithms, and data scales. None of the approaches scale to GPU clusters – they are 
all multiple GPUs in a single node. 
 
[Checconi2012]  ranks 1st on the Graph500 on Blue Gene hardware. They use 2D 
partitioning and a batch parallel “wave” that propagates along the rows of the 2D grid to 
eliminate redundant vertex updates (and 97% of the communication for those updates). 
Such batch parallel operations are very efficient for a GPU cluster. BFS is modeled in 
GAS as a “scatter” operation and thus directly corresponds to the “wave.”  SSSP is 
modeled as a gather on the in-edges followed by a scatter on the out-edges. The 
“wave” could thus provide an efficient basis for the gather and scatter phase of GAS 
algorithms on GPU clusters. 
 
We believe that good scaling on multiple GPUs and GPU clusters can be achieved 
across a wide range of algorithms, graphs, and data scales by using: a sophisticated 
partitioning strategy (2D); batch parallel waves that reduce communication costs when 
accessing vertex state; sophisticated techniques for thread and frontier handling 
(Merrill); and sophisticated approaches to task scheduling and latency hiding (e.g., 
Uintah). 
 
 
3.0 METHODS, ASSUMPTIONS, AND PROCEDURES 
 
3.1 Technical Objectives 
 
Our overall objective is to develop a high-performance, scalable, extensible, easy-to-
use, open-source platform for graph analytics on GPUs that is future-proofed against 
the continuing revolution in many-core hardware.  The design will have three primary 
aspects: 
 
1. A high-level abstraction: The high-level abstraction will make it possible for ordinary 

programmers to leverage data-parallel evaluation of graph algorithms on GPUs; 
 

2. A data-parallel runtime: An optimized, data-parallel runtime will deliver the potential 
of GPUs for graph analytics; and 
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3. A scalable architecture for graph analytics: Large graphs will be automatically 

decomposed into patches.  Operations on large graphs will be decomposed into 
tasks that operate over those patches. The patches and tasks will be distributed 
across the resources of a multi-GPU workstation or GPU-enabled compute cluster. 
A local scheduler on each node will run tasks as their prerequisites are satisfied, 
optimize the bandwidth utilization of the PCIe bus by intelligent data and task 
placement, and overlap data movement with computation to hide latency. 

 
3.2 Schedule 
 
The following table provides a schedule of the deliverables in year 1. 
 

Table 1:  First Year Deliverables 
Month  Milestone Date Narrative 
1 Oct    
2 Nov    
3 Dec 1 Dec 7, 2012 Software Development Plan 
4 Jan 2 Jan 31, 2013 Application Architecture 1 
5 Feb    
6 Mar    
7 Apr    
8 May 3 May 20, 

2013 
Code Level 1 

9 Jun    
10 Jul 4 July 9, 2013 Code Level 2 
11 Aug    
12 Sep    

 
 
3.3 Year 1 Roadmap 
 
During the first program year, we focused on the develop of (a) low-level 
implementations of graph primitives that extended Merrill’s work on BFS; (b) the 
development of a high-level abstraction (the GAS model); and (c) an efficient data-
parallel implementation of that abstraction on a single GPU (MPGraph v2).   
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The following table provides a high-level summary of the major events in year 1. 
 

Table 2:  First Year Summary 
Month  Milestone Narrative 
1 Oct  - Contract start 

2 Nov  - Kickoff telcon 

3 Dec 1 Literature Reviews: 
- Graph databases (SYSTAP); 
- Graph processing on GPUs (Davis); 
- Graph algorithms (Dr. Yan) 

4 Jan 2 Identified initial approaches: 
- Vertex-centric, 2D partitioning (SYSTAP) 

- Low-level CC algorithm (Davis) 

5 Feb  - Import of Merrill’s source code (Apache 2.0) 

6 Mar  - Exploration of GAS Architecture as basis for scale-out 
design. 

7 Apr   
8 May 3 - GPU GAS POC implemented in Thrust. 

9 Jun  - Thrust code evaluated on GPU, Intel Xeon Phi, Intel 
Thread Building Block, and Open MP. 

- Approximate BC using GAS API and sampling 
(SYSTAP); 

- Exact BC (Davis); 

10 Jul 4 - Mid-point review; 
- Dr. Zhisong Fu starts full-time; 
- Final review, 2-minute lightning talk; 

- Initial open source release (MPGraph v1, using Thrust 
POC). 

11 Aug  - Java GAS POC. 

12 Sep  - New MPGraph v2 implementation developed by Dr. Fu 
(10x faster than the original Thrust-based POC). 

 
 
Some analytics from the summer camp, e.g., approximate Betweenness Centrality, 
have not been migrated to the newer code base yet.  Likewise, there are analytics in our 
roadmap that we have not yet implemented such as Louvain Modularity, kcore, triangle 
counting, approximate diameter, graph invariants, etc. 
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3.4 Future Roadmap 
 
In the future, we planned to focus on multi-GPU scaling. We have outlined several 
approaches to scaling in the sections above.  Our starting point will be 2D partitioning.  
This will allow us to break down large graphs into patches while minimizing the 
communications volume.  Each patch will be able to fit onto a single GPU. The data 
movement will be overlapped with the computation in order to maximize the throughput. 
3.5 Technical Approach 
 
We are developing an open source, open architecture platform, MPGraph1, for scalable 
high-performance graph analytics on GPUs.  During the first program year, we 
developed two basic aspects that platform: 
 

- A high-level abstraction (based on the GAS abstraction); and 
- A data-parallel runtime (based on Merrill’s approach). 

 
We were to begin to tackle the third aspect (scalable analytics) during the 2nd program 
year. 
 
The version of MPGraph that was evaluated during the Summer Camp was based on a 
Proof of Concept (POC) using Thrust.  This POC could outperform the CPU for many 
graphs, but the code did not use any of Merrill’s concepts for efficient data-parallel 
operations on graphs.  During the summer camp we implemented new algorithms over 
the Thrust-based GAS Engine, including CC, and an approximate version of 
Betweenness Centrality (BC) based on edge-sampling [Brandes2001]. Sampling not 
only allowed us to scale to larger data sets, but also dramatically accelerated BC, which 
is known to scale poorly as a function of the size of the graph (in fact, the exact version 
of BC ran for a week without completing on the target data set).  Sampling can also 
speedup graph algorithms that run against indices, dramatically reducing the IOs 
required for a computation.  We also collaborated with the Johns Hopkins team to 
demonstrate a fast and accurate approach to triangle counting based on the cube of the 
eigenvalues. 
 
Since the Summer Camp we have developed a completely new code base that is 
significantly faster than the original POC – see Figure 2. We developed a BFS 
reference implementation for GraphLab.  BFS is implemented as a Scatter.  The 
speedups for SSSP are in reference to GraphLab’s SSSP implementation, which also 
does all the work in the Scatter phase. 
 

1 Massively Parallel Graph, https://sourceforge.net/projects/mpgraph/ 
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Figure 2:  MPGraph v2 Speedups versus POC 

 
 
The new code base will be released as MPGraph v2. This code base utilizes Merrill’s 
techniques for efficient data-parallel operations on graphs and encapsulates them within 
the GAS abstraction layer.  In particular, we use: 
 

- A compact frontier queue;  
- Dynamic granularity to assign threads, warps, and CTAs to edges and vertices; 

and 

- Bitmask cull, history cull, and warp cull heuristics to remove duplicate vertices 
from the frontier. 
 

Detailed performance results for MPGraph are given in the Analysis section below.   
 
Finally, we have developed a Java-based implementation of the GAS abstraction.  This 
implementation can run against in-memory data structures or disk-based indices. We 
were to use the Java implementation to prototype the target design for the GPU GAS 
Engine, explore approaches to deal with attributed graphs, and examine options to 
target the GPU from languages other than CUDA (e.g., Java / Scale, Python, etc.). 
 
3.6 Open Source Project 
 
Our goal is to develop a high-performance and scalable open source implementation 
offering an open architecture and a high-level abstraction.  Our efforts to date have 
established a data-parallel backend and demonstrated that the data-parallel backend 
can be encapsulated within a high-level abstraction. We are now working to extend the 
data-parallel backend to other algorithms, improve the encapsulation of the abstraction, 
and lay the ground work for a robust, open source, open architecture platform. In 
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addition, we have been working to establish performance regression tests in the NVIDIA 
performance lab.   
 
Our first open source release was on July 30th, 2013.  We had been planning a second 
release in December, 2014. The second release would provide an order of magnitude 
performance increase for common graph analytics and will make it easier for people to 
write new algorithms.   
 
3.7 High-Performance Graph Analytics 
 
Since the Summer Camp, we have implemented four high-performance graph analytics 
for the GPU using the GAS abstraction: BFS, SSSP, CC, and PR. These analytics are 
summarized in Table 3. The backend for these analytics uses a compact frontier queue, 
dynamic granularity, and a variety of cull techniques to obtain high performance. We 
present results for BFS and SSSP below.  
 
The GAS API presents a vertex-centric abstraction [Pregel2010].  The Gather operation 
may read on in-edges, the out-edges, or both. The Apply operation acts on vertices in 
the current frontier.  The Scatter operation distributes messages to other vertices, and 
again may operate on the in-edges, the out-edges, or both.  A large number of 
interesting algorithms can be implemented within this abstraction and then scaled 
transparently to run on CPU clusters.  
 

 
Figure 3:  GAS Graphic 

 
BFS is modeled in GAS as a Scatter operation. The GAS implementation of BFS 
therefore allows us to directly measure the abstraction overhead for that algorithm.  The 
GAS implementation of SSSP is a Gather plus a Scatter2. SSSP is thus the simplest 
algorithmic extension of BFS.  Details on the GAS algorithms are presented in Table 3. 
 
Both BFS and SSSP use a compact frontier. The frontier is realized using Merrill’s work-
efficient approach.  It provides a compact queue of vertices to visit in the next iteration. 
Since many vertices in a given iteration can have the same neighbor, the expansion of 
the frontier generally produces a large number of duplicates.  However, filtering 
duplicates globally across the GPU is a relatively expensive operation.  Therefore, the 
code uses low-cost heuristics to eliminate many, but not all, of the duplicate vertices. 

2 GraphLab actually breaks their own abstraction for SSSP as explained in depth below. 

Gather: collect information about my neighborhood 

Apply: update my value 

Scatter: signal adjacent vertices   
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Duplicate vertices that remain in the frontier can cause duplicate work in the next 
iteration.  The compact frontier design represents a tradeoff between time and space.  
Higher performance is obtained with the compact frontier, but the frontier queue 
consumes a significant portion of the memory on the GPU.  
 
The Gather and Scatter phases of the GAS abstraction are modeled using expand and 
contract operations in GPU kernels.  The edge-frontier is the set of edges to be 
traversed in a given iteration, based on the current vertex-frontier.  In practice the edge-
frontier is modeled as the vertices that are accessible by traversing those edges. The 
edge-frontier will contain duplicate vertices if the same vertex is discovered by 
traversing more than one edge in a given iteration.  Such simultaneous discovery is 
quite common and eliminating duplicate vertices efficiently is a significant challenge for 
the GPU.  The vertex-frontier is the distinct subset of vertices in the previous edge-
frontier that will be visited in the next iteration.   
 
The expand kernel generates an edge-frontier from the current set of vertices by 
traversing the edges for the vertices in the current vertex-frontier.  The contract kernel 
then reduces the edge-frontier to a compact vertex-frontier for the next iteration.  
Contraction is concerned with status lookup (resolving whether the vertex should be 
updated or scheduled) and eliminating duplicate work from the new vertex-frontier using 
heuristics to cull duplicate vertices.  In practice, the expand and contract operations may 
be realized as separate kernels (two-phase) or combined into a single kernel (either 
expand-contract or contract-expand).  Merrill showed that the two-phase kernel 
performed better if the vertex-frontier was large, but that the combined kernels provided 
better throughput for smaller frontiers such as roadmaps or the Bitcoin data set.  In our 
work, we have focused on two-phase kernels, but it is possible that higher performance 
could be realized for Bitcoin and similar data sets by developing a combined kernel and 
then using either the combined kernel or the two-phase kernel as appropriate for the 
data set, e.g., a hybrid kernel. 
 
Unlike BFS or SSSP, the CC and PR algorithms visit all vertices in the initial round and 
may visit a substantial proportion of all vertices in every round. We are currently 
experimenting with a variety of techniques designed to optimize the frontier for such 
workloads.  
 
In general, graph algorithms are memory bound because they (a) perform very little 
work per byte; and (b) have poor locality. PR does more work per byte than the other 
algorithms that we have explored. This makes it a good candidate for GPU acceleration, 
and other researchers have already demonstrated that it is possible to obtain good 
speedups on PR on a GPU [Totem2012] and on multiple GPUs  [Duong2012, 
Zhong2013]. Obtaining good performance and good multi-GPU speedups for BFS, 
SSSP, and similar fundamental algorithms is much harder because these algorithms put 
significantly more demand on the memory systems. 
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Table 3:  Graph Analytics Analyzed in This Report 

Label Name Description GAS Approach 
BFS Breadth First 

Search 
Label all vertices based on their 
minimum distance (hops) from a 
given starting vertex. BFS is a 
fundamental building block for 
many graph algorithms. 

- Schedule starting vertex. 

- Gather: NOP 

- Apply: if not visited, set level to 
round#. 

- Scatter iff visited first time. 

SSSP Single 
Source 
Shortest Path 

Find the shortest path between a 
given vertices and all directly or 
indirectly connected vertices in 
the graph such that the sum of 
the weighted edges is 
minimized. 

- Gather: min over in-edges 3. 

- Apply: value = min(self, gather). 

- Scatter: out-edges iff value 
changed. 

CC Connected 
Components 

Find the distinct and non-
overlapping  subgraphs of a 
graph. Each such subset 
consists of vertices that are 
connected by a path. 

- Visit all vertices in the first round. 

- Gather: min of source vertex label 
over all edges.4 

- Apply: value = min(self, gather). 

- Scatter: all-edges iff value 
changed. 

PR Page Rank Page rank assigns weights to 
the vertices in a graph based by 
on the relative “importance” as 
determined by the patterns of 
directed links in the graph. 

- Visit all vertices in the first round. 

- Gather: sum of (neighbor_value / 
neighbor_num_out_edges) over 
the in-edges. 

- Apply: value = 0.15 + (1.0 – 0.15) 
* gather 

- Scatter: iff value has significantly 
changed (fabs(old-new) > epsilon) 

where epsilon controls the degree of 
convergence before the algorithm 
terminates.5 

 
 
 

3 The GraphLab implementation of SSSP (and CC) does not use a Gather phase.  Instead, it breaks the 
GAS abstraction and communicates the new path lengths as messages during the Scatter phase.  This 
means that it traverses ½ of the number of edges of the “pure” GAS implementation.  We have 
implemented this optimization in MPGraph v2 and are examining ways of extending the GAS abstraction 
that will allow us to capture the more efficient algorithm in an easy to express program. 
4 The GraphLab implementation of CC breaks the GAS abstraction in exactly the same manner as SSSP. 
5 In fact, page rank is typically run to a fixed number of iterations in order to remove side-effects from the 
order in which floating point updates are computed.  This produces more reliable convergence. 
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3.8 Evaluation 
 
Merrill used two different mechanisms to estimate the speedup offered by a GPU over a 
CPU for graph processing. First, he directly compared with the best published results for 
multi-core CPU algorithms [Leiserson2010, Agarwal2010]. Both studies reported sub-
linear scaling per CPU core and Merrill quotes harmonic means speedups of 8.1x and 
4.2x versus their 4-core and 8-core parallel BFS results. Second, Merrill implements a 
single-core version of BFS, verifies the performance of that implementation against 
published single-core results, and then uses idealized linear scaling to identify an upper 
bound for multi-core performance.  Using this idealized linear scaling assumption, he 
estimated the GPU speedup at 12x – this is the point at which the GPU would be faster 
than the CPU for ½ of the measured data sets.   
 
As Merrill noted, comparing CPU and GPU performance is challenging, in part because 
good CPU implementation of graph algorithms are difficult to write. For example, 
[Zhong2013] develops CPU implementations for BFS, SSSP, and PR using MTGL in 
order to characterize the performance of the GPU implementation, but those CPU 
implementations have poor scaling.  Rather than attempt to develop best of breed CPU 
implementations for each algorithm, we have focused on a comparison with a widely 
deployed graph mining platform, GraphLab. 
 
Our goal has been to compare the performance of the GPU with the CPU within the 
context of a high-level abstraction for graph algorithms. To do this, we measure actual 
speedups for BFS and SSSP as implemented in the current development version of 
MPGraph 6  against GraphLab (v2.2).  GraphLab is a broadly deployed CPU-based 
graph mining platform that uses the same vertex-centric abstraction layer.  
 
For our GPU evaluations we used a NVIDIA c2075 (Fermi architecture) 7.   
 
The CPU platform was a machine containing a 3.33 GHz X5680 CPU chipset. This is a 
dual-socket Westmere chipset that contains 12  physical cores and 12 MB of cache. 
The machine contains 24 GB of 1333 MHz ECC memory. The software environment is 
RedHat 6.2 Beta. CPU code was compiled with gcc (GCC) 4.4.6 20110731 (Red Hat 
4.4.6-3). The results were obtained using the synchronous engine for GraphLab due to 
core faults with some data sets when using the asynchronous engine 8.   

6 https://sourceforge.net/projects/mpgraph/ 
7 We have encountered some memory access problems with larger graphs on the K20c.  We have been 
able to replicate the problem in Merrill’s original source code and are working to resolve this issue.  This 
memory access problems manifests commonly for large graphs on the K20, but is rarely observed for the 
Fermi architecture cards.  Therefore we have used the c2075 for the larger graphs in this study. 
8 [Pearce2010] has shown improved scaling for CPU architectures using asynchronous processing for 
BFS, SSSP, and CC.  GraphLab v2.2 does include an asynchronous engine, but the asynchronous 
engine was not used due to problems (segment faults).  However, tests by the GraphLab developers 
(private communication) with PR on the kron_g500_logn20 data set failed to demonstrate a speedup over 
the synchronous engine.  For 8 CPU cores, the run times were 10.7s for sync versus 18.5s for async; 
33% fewer updates were performed, but the throughput was slower.  The GraphLab asynchronous 
engine should be re-evaluated in the future. 
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For each data set, we pre-selected 100 vertices at random and filtered the vertices to 
make sure that each selected vertex had at least one out-edge.  For both BFS and 
SSSP, we then performed 100 trials, each trial using a different starting vertex.  For 
GraphLab, we then varied the number of CPU cores that were used by the platform and 
report results for 1, 2, 4, 8, 12, 16, and 24 cores.  The machine has 12 physical cores.  
Results reported for more than 12 CPU cores use hyper threading. 
 
3.9 Data Sets 
 
We present results for the following data sets.  Two of these data sets were used by 
Merrill in his analysis (wikipedia-20070206 and kron_g500-logn20).  This gives us a 
basis for direct comparison with Merrill’s results.  Three of the data sets are from the 
XDATA Summer Camp activity. 
 

Table 4:  Data Sets 
data set #vertices #edges source 

wikipedia-
20070206  3,566,907  

 
45,030,3

89  
http://www.cise.ufl.edu/research/sparse/MM/
Gleich/wikipedia-20070206.tar.gz 

kron_g500-
logn20  1,048,576  

 
89,239,6

74  
http://www.cise.ufl.edu/research/sparse/MM/
DIMACS10/kron_g500-logn20.tar.gz 

Akamai 

 
24,339,21

7  

 
25,602,0

11  DARPA 

Bitcoin  6,297,539  

 
28,143,0

65  DARPA 

twitter_d1  1,851,583  

 
17,197,6

88  DARPA 
 
 
A few points are worth calling out about these data sets: 
- The kron_g500-logn20 data is a scale-free graph. 
- The Bitcoin has a small frontier and a very long tail.  For bitcoin, only a very few 

vertices were active in any given iteration and a large number of iterations were 
required for BFS and SSSP (on the order of 8000 iterations). 

- The Akamai, Bitcoin, and twitter_d1 data sets are Challenge Problem data sets from 
the XDATA Summer Camp activity. 
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4.0 RESULTS AND DISCUSSION 
 
4.1 Improvements Since the Summer Camp 
 
Figure 4 shows speedups of MPGraph v2 and the initial POC implementation, which 
used Thrust, over the performance of GraphLab using a single CPU core.  The POC 
provided speedups for BFS, but was actually slower than the CPU for SSSP on many 
data sets (wikipedia, kron_g500logn20, and Bitcoin).  
 
Our first action after the summer camp was to review the POC implementation and 
determine whether it could be optimized.  We attempted several optimizations, including 
eliminating unnecessary work in the gather and scatter phases and generating a 
compact frontier. These optimizations resulted in only very minor performance 
improvements (on the order of 10% or less). 
 
In order to obtain a significant performance improvement, we replaced the Thrust-based 
POC.  The original POC relied on Thrust to assign threads to vertices and edges, rather 
than using the data-dependent adaptive techniques developed by Merrill. In addition, 
the original POC modeled the frontier with a Boolean flag on each vertex.  This 
approach works well enough for small graphs, but Merrill’s approach using a compact 
frontier and adaptive techniques to assign threads, warps, and CTAs to edges and 
vertices is much more efficient for larger graphs, for graphs with small frontiers and long 
tails, such as Bitcoin, and for the irregular access patterns associated with BFS or 
SSSP – as seen in Figure 4 
 

 
Figure 4:  MPGraph Speedups versus CPU 
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4.2 BFS 
 
Figure 5 depicts speedups as a function of the number of CPUs cores for BFS, and the 
speedup of the GPU as a function of a single CPU core. The measured CPU speedups 
for BFS are in fact much lower than those assumed by Merrill. Some things of interest: 
 
- Overall, GraphLab shows very little scaling as we increase the number of CPU 

cores.  For some data sets (kron_g500-logn20 and twitter_d1), CPU performance 
actually decreases as we add more CPU cores.  For the other data sets, adding 
more cores does not produce any significant speedup. For all data sets, the actual 
speedup or slowdown of GraphLab as a function of CPU cores is very limited. The 
maximum speedup is 3.1x (Akamai with 24 cores).  The maximum slowdown is 0.2x 
(kron_g500-logn20 with 16 cores). 

- Speedups decrease as a function of the data scale.  For example, GraphLab has a 
speedup of 8.65x for 24 cores over its single core performance for the delanuey_n13 
data set (not shown), with only 8,192 vertices and 24,547 edges.  This suggests that 
the CPU performance declines quickly (a) once the data no longer fit into the CPU 
cache; and (b) as the CPU memory bandwidth becomes saturated.   

- There is an interesting, and unexplained, boost from hyper threading when all 24 
cores are in use.  One hypothesis is that hyper threading allows the CPU to have 
more memory requests in flight and allows the machine hide more of the latency 
associated with memory fetches. 

- GraphLab is not competitive with the best CPU BFS implementations.  For example, 
[Leiserson2010] shows a 6x scaling on 8 cores for the wikipedia-20070206.  For the 
same data set, GraphLab scales by 0.88x on 16 cores and 1.44x on 24 cores (the 
hyper threading boost).  We believe that this reflects bias in the development of 
GraphLab towards a general purpose platform. However, it is important to maximize 
the per-node throughput for distributed systems in order to scale economically. 
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Figure 5:  MPGraph speedups over the CPU (BFS) 

 
 
4.3 SSSP 
 
As seen in Figure 6, the performance of MPGraph for SSSP is broadly consistent with 
the results for BFS as seen in Figure 4.  One of the challenges for the GPU 
implementation was to efficiently filter the remote vertices before adding them to the 
frontier in order to minimize the size of the frontier and the amount of duplicate work 
performed. Conceptually, SSSP is very similar to BFS. However, SSSP can revisit 
vertices that have already been labeled when they are discovered through a longer 
traversal (more hops) with less total weighted path length. Because of this certain 
optimizations that are possible for BFS cannot be performed for SSSP.  For example, 
Merrill’s BFS code does not insert remote vertices into the frontier if they have already 
been visited.  GraphLab performs a similar optimization, filtering the vertices before 
adding them to the new frontier based on whether the new value for the remote vertex 
could be reduced by an update pushed by the local vertex along the edge to the remote 
vertex.  This decision can be made without considering the edge weight for BFS.  For 
SSSP, we need to consider the weight of the source vertex, the edge weight, and the 
current value of the remote vertex to make the same decision.  This introduced a new 
non-coalesced access pattern into the code, which significantly decreased the 
throughput of SSSP on the GPU when compared to BFS.  We fixed this performance 
problem by maintaining the vertex state in a compact vector, which provides coalesced 
access. 
 
Another challenge with SSSP, is computing the minimum over the path lengths for the 
new frontier. In our GPU implementation, the expansion step accesses the out-edges 
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and generates a new frontier from old frontier. We also keep a predecessor value array 
(so named because it captures the predecessors of the current frontier in a level 
synchronous BFS traversal) to maintain the values of the predecessors of the vertices in 
the new frontier after expansion. In the contraction step, the minimum value for the 
vertices of the new frontier is computed with atomicMin.  Atomic operations are 
relatively expensive for Fermi and higher performance is anticipated for Kepler 9. 
 
Both MPGraph v2 and GraphLab v2.2 implement an optimization for SSSP that 
eliminates the Gather phase of the algorithm.  Instead of collecting the new path lengths 
in a Gather phase, the Scatter phase breaks the encapsulation of the GAS API to 
transmit the new path lengths to the remote vertex.  This optimization eliminates roughly 
half of the edge traversals 10.  GraphLab performs slightly less well for SSSP when 
compared to its own performance on BFS.  We attribute this to the messaging protocol 
used by their SSSP implementation, which appears to be slightly less efficient rather 
than their protocol for normal Scatter operations, such as BFS. This leads to smaller 
speedups (the speedups for Akamai and Bitcoin are nearly 1.0x for GraphLab) and 
larger slowdowns (for kron_g500logn20 and twitter_d1).   
 

 
Figure 6:  MPGraph speedups over the CPU (SSSP) 

 
 
 

9 We did not collect data on the Kepler K20 cards due to a memory access problem in the library that was 
aggravated by the K20.  The reported numbers are for an NVIDIA Fermi c2075. 
10  The Thrust-based POC did not implement this optimization for SSSP. This is why its SSSP 
performance was significantly worse when compared to its own BFS performance. 
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4.4 CC/PR 
 
We are currently developing GAS implementations for the GPU for CC and PR.  The 
GAS algorithms themselves are easy to express.  However, these algorithms have 
different characteristics from both BFS and SSSP. Specifically, CC and PR tend to have 
larger frontiers, especially in the first several iterations. PR does more work per byte, 
which tends to favor the GPU.  However, PR requires us to compute the sum of its 
neighbors. This will produce the wrong result if there are duplicates in the frontier.  
Thus, for PR, it is necessary eliminate all duplicates from the vertex-frontier rather than 
relying on cull heuristics.  
 
Early results suggest a 10x speedup over the thrust based POC from the summer 
camp, but we need to examine the performance of the data-parallel backend in more 
depth before reporting results on these algorithms. We would also like to compare with 
[Zhong2013] (Medusa) and [Totem2012], both of which have results for PR on the GPU. 
 
The UC Davis CC implementation described in their report is based on a GPU algorithm 
for graph connectivity [Soman2010] that has intrinsically better performance than CC 
expressed as a GAS program (see Table 3).  The goal of a high-level abstraction is to 
make easy to capture a wide range of algorithms. However, the high-level abstraction 
itself is a work in progress. Future research will explore whether algorithms such as 
[Soman2010] can be captured through extensions to the GAS API.  Other potential 
extensions to the high-level abstraction would expose mechanism for sampling, 
leveraging sketches, etc. 
 
4.5 Cost per GTEPS 
 
It is difficult to characterize the price performance for CPU and GPU solutions.  CPU 
solutions exist today, but their throughput is remarkably poor in comparison to the best 
known algorithms for BFS, SSSP, or CC.  GPU solutions require an investment in basic 
research to develop solutions that deliver the high-performance potential of the GPU, 
encapsulate the capabilities of the hardware within a high-level abstraction, and can 
scale to multiple GPUs and GPU clusters. 
 
Assuming that we purchase commodity hardware solutions, a 4-core CPU server might 
cost $4000 and deliver (as a very conservative estimate) 1/10th of the throughput of a 
single GPU.  Adding more CPUs does not appear to be a cost effective technique for 
obtaining higher performance. CPU clusters increase the data scale of the problems 
that can be addressed and provide (sub-linear) scaling in throughput. 
 
If we install a single Kepler GK110 GPU into the same $4000 server, we will raise its 
price by between $650 (for the GTX780 card), $1000 (for the Titan), and $3000  (for the 
K20).  At the same time, we will have 10x more throughput.  Thus, we have increased 
the $/GTEPS by between 5x (10x faster, less than twice the price) and 8x (10x faster, 
with only 16% more for the GTX780).  These are very conservative estimates.  The 
actual price/performance ratio is likely to be significantly better as measured against 
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existing graph mining solutions.  More realistic speedups appear to be on the order of 
50x for a single GPU when comparing with solutions such as GraphLab. 
 
GPU-based solutions appear to be a clear winner for graphs with up to 1 billion edges.  
Beyond that point, we need more research to understand how a GPU-based solution 
will scale to multiple GPUs and GPU clusters. 
 
5.0 CONCLUSIONS 
 
Efficient graph algorithms are challenging to write, regardless of the hardware 
architecture. High-level abstractions are necessary in order to expose the potential 
performance of the underlying hardware architecture to everyday users.  In this effort, 
we have demonstrated that an efficient data-parallel GPU implementation of low-level 
primitives can be encapsulated to create a high-performance library for writing graph 
algorithms.  The underlying data-parallel primitives exploit a variety of adaptive 
strategies and deliver high performance across a wide range of graphs. Our experience 
has shown us that new adaptive strategies may need to be developed to handle graph 
algorithms where the frontier is the vast majority of the vertices in the graph, for 
example, CC and PR.  Once developed, those adaptive strategies can be encapsulated 
within the same high-level abstraction and disappear from the concern of the graph 
analytic developer. 
 
Graph algorithms are known to be memory bound.  The GPU architecture has ten times 
the memory bandwidth of the CPU and efficient GPU graph traversal implementations 
are able to deliver significant speedups in comparison with CPU architectures.  Merrill 
assumed idealized linear scaling for CPU graph algorithms.  However, empirical 
evaluation has shown that, for at least one widely used platform, actual CPU scaling is 
much worse than linear.   
 
[Ediger2013] demonstrated linear scaling on the XMT using relatively slow clocks and a 
low-latency interconnect. [Checconi2012] has shown good scaling to extremely large 
graph on BFS using Blue Gene hardware.  In contrast, GPUs represent a cost 
affordable approach to high performance graph analytics on commodity hardware. 
Existing work has shown good scaling to multiple GPUs in a single workstation on Page 
Rank, but not on Breadth First Search – the fundamental building block of graph 
algorithms. More research is required in order to realize the potential of GPUs as a 
commodity platform for high performance graph processing.   
 
The GAS abstraction makes it easy to express a large variety of graph algorithms.  
However, there are some algorithms, such as connected components, where the best 
known algorithms cannot be easily expressed as a GAS program [Soman2010].  
Further research is required to introduce more flexibility into the high-level abstraction 
without either (a) limiting the ability to execute algorithms in an efficient, data-parallel 
fashion; or (b) introducing features into the architecture that would prevent scaling to 
multiple GPUs or GPU clusters.  Some possibilities include abstractions for sampling 
the edges of the graph [Brandes2001, Tsourakakis2009, Haim2010], computations on 
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sketches [Ahn2012], approximations on streaming graphs [Kutzkov2013], managing 
mutations on the graph (cutting edges or removing vertices), introducing explicit 
temporal dimensions into the graph, or maintaining auxiliary data structures, such as 
probabilistic frequent item sets [Khan2010]. 
 
5.1 Next Steps 
 
Unfortunately this effort was shortened due to an early termination. During the coming 
year, we had planned to complete the current refactoring and then explore approaches 
to scale computations to multiple GPUs. We view multi-GPU support as the critical next 
step to enabling a new low-cost, high-performance capability for graph analytics.  Our 
goal was to achieve good scaling without sacrificing the ease of use introduced by the 
high-level abstraction.  We believe that success for the platform lies in rapidly 
developing a high-performance and scalable implementation with an open architecture 
and a high-level abstraction.  This would allow other researchers to experiment with and 
extend the framework and will support integration into non-CUDA environments such as 
Java, python, and R. 
 
5.2 Future Work 
 
Our goal has been to develop a scalable, high-performance, open-source, and open 
architecture platform for GPU based graph analytics.  We will continue to pursue this 
and believe that the experimental results presented in this report not only confirm the 
capability of the GPU as the basis of a high-performance graph analysis platform, but 
also draw new attention to the severe throughput limitations of existing CPU based 
graph analysis programs and provide evidence for the importance of GPU-based 
solutions as a low-cost path to high performance on graphs.  
  
Our intention was to shift the focus of development from (a) single GPU performance 
and (b) the high-level abstraction to the development and evaluation of a single-
machine, multi-GPU architecture. 
 
The following list outlines some of our planned research topics for the development of a 
scalable data-parallel graph analytics platform: 
 
- Scaling to GPU clusters through a collaborative research effort with Dr. Berzins and 

the University of Utah Scientific Computing and Imaging Institute; 

- Optimized memory layouts and compression techniques; 
- Data-parallel operations on per-edge vectors and sets.  The current code assigns 

one thread to each edge and vertex. This is appropriate when the edge or vertex 
state is a scalar, but does not provide sufficient parallelism when the edge state is a 
vector or set;  

- Exposing the high-level abstraction to other programming languages (Java/Scala, 
Python, R, etc.); 

- Improved robustness for the open source platform; and 
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- Improved outreach for the open source platform. 
 
The following list outlines some research topics that would go beyond the basic 
capabilities to develop a more novel platform: 
 
- Fast algorithms for graph pattern matching and approximate graph pattern matching.  

This family of techniques is relevant where there is an a priori model to be matched 
in the data; 

- Fast algorithms for graph pattern mining and aggregation, e.g., [Khan2010].  This 
family of techniques provides tools for bottom-up analysis to identify the top-k 
interesting patterns; 

- Fast approximation techniques, including sampling [Brandes2001, Tsourakakis2009, 
Haim2010] and sketches [Ahn2012], and means for characterizing the estimation 
error in those approximations; and 

- Streaming graphs, e.g., [Kutzkov2013]. 
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LIST OF ACRONYMS 
 
BFS    Breadth First Search 
CAS    Compare And Swap  
CC    Consensus Clustering 
CPU    Central Processing Unit 
CUDA   Compute Unified Device Architecture 
DRAM   Dynamic Random Access Memory 
DSL    Domain Specific Languages 
GAS    Gather and Scatter  
GFLOPS   Giga FLoating-point Operations Per Second  
GPU    Graphics Processing Unit 
GTEPS   Giga Traversed Edges Per Second  
ORNL   Oak Ridge National Laboratory  
POC    Proof Of Concept 
PR    Page Rank  
RAM    Random Access Memory 
RDF    Resource Description Framework  
SPARQL Simple Protocol and Resource Description Framework Query 

Language  
SSSP    Single Source Shortest Path 
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